Marks: 75

Note: All Questions are Compulsory. Figures to the right indicate full marks. Draw diagrams wherever required. Use of Scientific calculator is permitted Q. 1 Choose the appropriate option for following multiple choice based questions. 1 The movement of drug between one compartment and other like blood or extravascular tissue is referred to as **Drug Disposition** a **Drug Distribution** b Drug binding \mathbf{c} Drug elimination d 2 Absorption of drug through rectal route follows Endocytosis a Facilitated diffusion b Passive diffusion \mathbf{c} d Pore transport involves the engulfment of small molecules or fluid Endocytosis **Pinocytosis** b Phagocytosis d Exocytosis helps in transporting of inorganic ions across the membrane 1 Ion channels Voltage gated channels b Aqueous filled pores c Diffusion d Drugs absorbed by ion pair transport should 1 Ionize at all pH a Have high partition coefficient b Depend on water flux for absorption c Require energy in the form of ATP d 1 Apparent volume of distribution is Plasma drug concentration X amount of drug in body Plasma drug concentration / amount of drug in body Amount of drug in the body X plasma drug concentration Amount of drug in the body /plasma drug concentration

Duration: 3hrs

Paper / Subject Code: 87614 / Biopharmaceutics and Pharmacokinetics

7	Transfer of drug from plasma to tissue depends on 1
a	Blood perfusion rate of tissue
b	Weight of tissue
c	Size of tissue
d	Gastric emptying rate
8	Glomerular Filtration is
a	Non selective Multidirectional process
b	Selective Unidirectional process
c	Non selective Unidirectional process
d	Selective Multidirectional process
0	
9	Renal Clearance is expressed as
a	Rate of urinary excretion/ plasma drug concentration
b	Elimination rate/ Plasma drug concentration
C	Plasma drug concentration / Rate of urinary excretion
d	Plasma drug concentration / Elimination rate
10	is Type III LISP Dissolution test appointing
	is Type III USP Dissolution test apparatus 1 Rotating Paddle
a b	Flow through Cell
c	Reciprocating cylinder
d	Paddle over disc
u	1 addic over disc
11	What is the correct order of bioavailability of different dosage forms?
a	Solutions > Emulsion > Capsules > Tablet > SR Tablet
b	Solutions > Emulsion > Tablet > Capsules > SR Tablet
c	Emulsion > Solutions > Tablet > Capsules > SR Tablet
do	Emulsion > Solutions > Capsules > Tablet > SR Tablet
12	Bioavailability is 1
a	The rate and extent of absorption of the unchanged drug from its dosage
	form
b	The time of absorption of the drug from its dosage form
c	The time of absorption of the unchanged drug from its dosage form
d	The rate of absorption of the drug from its dosage form
13	Which route of drug administration shows 100% Bioavailability 1
	Oral
a b	IV
c	Rectal
d	Topical
u	Topical

Paper / Subject Code: 87614 / Biopharmaceutics and Pharmacokinetics

14	Method of residual can be used to determine absorption rate constant when	1
a	Ratio of Ka to K _E is greater than or equal to three	
b	Ratio of K _E to Ka is greater than three	
c	Ratio of Ka to K _E is less than three	
d	ratio of K _E to Ka is greater than five	
15	In noncompartmental analysis, Mean residence time is equal to	1
a	The area under the zero moment's curve/area under the first moment curve	
b	The area under the first moment curve/area under the zero moment curve	
c	1 / Area under the first-moment curve	
d	1/ Area under the zero moment curve	
16	The steady state concentration following IV infusion administration determined by	1
a	Css = Infusion Rate - Clearance	
b	Css= Clearance / Infusion Rate	
c	Css= Infusion Rate X Clearance	
d	Css= Infusion Rate/ Clearance	
17	In multi compartment model transfer of drug from central compartment to	1
	peripheral compartment assumed to follow	
a	Zero order kinetics	
b	First order Kinetics	
C	Second Order Kinetics	
d	Mixed order kinetics	
		_
18	is drug accumulation in the body relative to first dose	1
a	Accumulation Factor	
ф	Accumulation Index	
c	Apparent volume of distribution	
d	Fluctuation	
19	Capacity limited kinetics is also called as	1
a	Linear Pharmacokinetics	
b	Non linear pharmacokinetics	
c	Zero Order Kinetics	
d	First order Kinetics	
20	In Michaelis- Menten equation When value of Km=C	1
a	Rate of process is zero order	
b <	Rate of process is first order	
c	Rate of Process is half the maximum rate	
d	Rate of process is double the maximum rate	

27765 Page 3 of 4

Q.II	Attempt any 2	2x10
1	An intravenous bolus dose of 125 mg of drug following one compartment	
	kinetics give an extrapolated concentration at zero time of 25 mg/lit and	
	elimination rate constant of 0.85 Hrs, calculate	2
	a) Volume of Distribution and Elimination half life	2
	b) Total systemic clearance and AUC zero to infinity	2
	c) Amount of drug eliminated from body after 6 hrs	2
	d) Plasma Drug Concentration after 4 hours	
	e) Time required to eliminate 65% dose of drug.	
2	Elaborate on fluctuations in plasma concentration of drug after multiple	10
	IV bolus injection. Explain the equation used for calculation of maximum	
	and minimum plasma concentration.	
3	Explain any four physiological barriers to distribution of drugs.	10
Q.III	Attempt any 7	7x5
10	Enlist different dosage form related factors affecting absorption of drug.	5
	Explain any two.	
2	Write a note on Facilitated diffusion	5
3	Enlist The physicochemical factors influencing the distribution of drugs.	5
S. S	Explain any two.	
4	Explain the effect of glomerular filtration on excretion of drugs.	5
5	Write a note on IVIVC.	5
6	Enlist the methods for measurement of bioavailability. Explain any one.	5
	Explain determination of absorption rate constant by method of residual.	5
8	What are the causes of non-linearity in drug absorption and distribution?	5
9	Outline the factors affecting Drug Protein Binding and explain any one	5
	of them	
